Separable
$$f(x) dx = g(y) dy$$

 \rightarrow just integrale both sides.

Linear dy +
$$P(x)y = g(x)$$

The problem of the sides by integrating factor

 $T = e^{\int P dx}$

and recognize new LMS as $\frac{d}{dx}$ (something).

Exact Adox + Bdy =0 where
$$Ay = Bx$$
.

Solution is $f(x,y) = C$ where $f_x = A$, $f_y = B$.

(solve (1) first, then sub into (2), or vice versa.)

Hope for the best Given general DE
$$Adx + Bdy = 0$$
 Can try to multiply both sides by integrating fuch: $I(x)$ or $I(y)$ to make it exact.

Solutions by substitutions

· Nauvodevonz :

Adx + Bdy =0

A,B homogenous of some degree.

Let
$$y(u,x) = ux$$
 (or $x = vy$)

 \sim get separable DE.

• Bernoulli

$$\frac{dy}{dx} + f(x)y = f(x)y^{n}$$
Let $u(x) = y^{(x)}^{n}$.

The second of the second o

·special form

$$\frac{dy}{dx} = f(Ax + Bx + C)$$

$$Lef \quad U = Ax + Bx + C$$

$$\Rightarrow get \quad Separable \quad OE.$$