Separdde $f(x) d x=g(y) d y$
\rightarrow just integrate both sides.

Linear $\quad \frac{d y}{d x}+P(x) y=g(x)$
\rightarrow multidy both sides by integrating facts

$$
I=e^{\int \rho d x}
$$

and recognize new LUS as $\frac{d}{d x}$ (something).
Exact $\quad A d x+B d y=0$ where $A_{y}=B_{x}$.
Son is $f(x, y)=C$ when $f_{x}=A, f_{y}^{(2-B}$.
(solve (1) firs, then sob into (2), or vire versa.)
Hope for the best Given general DE

$$
A d x+B d y=0
$$

can try to multiply both sides by integrating fuck es $I(x)$ or $I(y)$ to moke it exact.

Solutions by substivtions

- Homogenas:

$$
A d x+B d y=0
$$

A, B homogerous of scree degree.
Let $y(u, x)=u x \quad($ or $x=v y)$ \leadsto get separable DE.

- Bernoulli
$\frac{d y}{d x}+P(x) y=f(x) y^{n}$
Let $u(x)=y(x)^{1-n}$. \rightarrow get linear DE.
- special form

$$
\frac{d y}{d x}=f(A x+B x+C)
$$

Let $u=A x+B x+C$. \leadsto get separable $O E$.

